检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学进展》2006年第3期336-342,共7页Advances in Mathematics(China)
摘 要:引入了Dirac结构的对偶特征对的概念,并给出了相应的可积性条件.利用这些结果,得到在Dirac流形的子流形上自然诱导出Dirac结构的条件,结果改进了Courant T.J.给出的相应条件;还得到Poisson流形在子流形上诱导出Poisson结构的条件,并改进了Weinstein A.和Courant T.J.所给出的相应条件;最后证明了预辛形式的可约Dirac结构与相应商流形上的辛结构之间存在一一对应的关系.The notion of the dual characteristic pair of Dirac structures is introduced,using which, the authors give the conditions for maximally isotropic sub-bundles being integrable. From this result they obtain a condition for inducing natural Dirac structures on the sub-manifolds of Dirac manifolds, which generalizes Courant's result. Moreover, the conditions for Poisson manifolds inducing Poisson structures on its sub-manifolds are obtained,which improves those given by Weinstein and Courant. Finally, they prove that there is a 1-1 correspondence between the reducible Dirac structures of presymplectic forms and the symplectic structures of the reductive manifolds.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.55.72