检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《北京航空航天大学学报》2006年第6期742-746,共5页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金资助项目(10272008)
摘 要:应用第1类Lagrange方程建立的带约束多体系统动力学方程为非线性微分-代数方程组.利用增广法,将其转化成了常微分方程组,并表示成矩阵形式.根据方程的特点,给出了方程的Jacobi矩阵的具体表达式,提高了计算效率.在此基础上,给出了Lyapunov指数的数值计算方法,并通过对具体的树形和非树形多体系统进行Lyapunov指数数值计算,结合相图和Poincare映射对系统的动力学特性进行了分析,表明了该方法的可行性和有效性.Dynamic equations of muhibody systems with constraints induced by the first kind of Lagrange's equations are nonlinear differential-algebraic equations. To be solved numerically, nonlinear differential- algebraic equations were transformed into ordinary differential equations with the augmentation approach. Ordinary differential equations and their Jacobian matrix were given in the matrix form to improve computational efficiency. A numerical method of Lyapunov exponents of nonlinear dynamics of multibody systems was demonstrated. An example was given to analysis dynamical behavior of two muhibody systems with topological tree and non-tree configuration, such as bifurcation and chaos by calculating Lyapunov exponents along with Poincare maps and phase graphs.
关 键 词:多体系统 微分-代数方程 LAGRANGE方程 LYAPUNOV指数
分 类 号:O316[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15