Moore-Penrose逆的可微性  

Differentiability of Moore-Penrose Inverse

在线阅读下载全文

作  者:赵玉萍[1] 许天周[2] 

机构地区:[1]青海民族学院数学系,青海西宁810007 [2]北京理工大学理学院,北京100081

出  处:《江汉大学学报(自然科学版)》2006年第2期3-5,共3页Journal of Jianghan University:Natural Science Edition

摘  要:讨论了Hibert空间H1到H2有界线性算子全体构成的Banach空间LH1,H2上Moore-Penrose逆的连续性和可微性,给出了函数T+t在一点可微的几个等价描述,同时得到一个求导公式.所得的结果推广了Golub和Pereyra早期的主要结果.Let H1, H2 be two Hiberts spaces over the complex field, and let L(H1, H2) denote the Banach space of all bounded linear operations T: H1→ H2 with the operator norm ||T|| = sup { || Tx||:||x|| = 1 }. Let [a, b] be an interval with be an element of [a, b], and T(t) be an operator valued function defined for all t ∈ [a, b]. By T'(t) denote the derivative of T(t) at t, and by T'(t) denote the Moore-penrose inverse T(t)^+ of T(t). The continuity and differentiability of the Moore-penrose inverse in L (H1, H2) is investigated. Some necessary and sufficient conditions for the function is differentiable at to are given. A formula for derivative (T^+) ' is derived. The main results of Golub and Pereyra in [4] generalized to the case of operators in Hibert spaces.

关 键 词:MOORE-PENROSE逆 有界线性算子 连续性 可微性 

分 类 号:O177.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象