检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
出 处:《南京理工大学学报》2006年第3期302-305,310,共5页Journal of Nanjing University of Science and Technology
基 金:国家"863"计划(2002AA735041)
摘 要:为了实现室内环境中移动机器人的同时定位和地图创建,提出了一种新方法,该方法应用顺序蒙特卡罗方法,把定位和地图生成分成状态估计和参数估计,应用多粒子滤波器实现同时估计机器人位置和障碍物位置。环境感知采用机器人自身配置的声纳传感器,应用哈夫变换提取环境障碍物边界特征,用直线近似表示,并提出了一种可靠的特征匹配方法。Pioneer 2移动机器人在实际室内环境中完成的实验证明了该方法的可行性。This paper provides a novel method to realize the mobile robot indoor simultaneous localization and mapping (SLAM) , which is a key prerequisite for a truly autonomous robot. This method applies Sequential Monte Carlo (SMC) method which has made much success in localization recently. The localization and mapping is divided as state estimation and parameter estimation respectively, and multiple particle filters are applied to estimate the robot position and the obstacle position simultaneously, The environment information is observed through sonar sensors mounted on a robot itself. The Hough Transform is used for extracting environment obstaele limit feature from the sonar observation. The feature is represented by line approximately, and the robust algorithm is proposed to implement feature matching. The experiment is performed with a Pioneer 2 mobile robot in a realworld indoor environment, and the feasibility of this method is proved.
关 键 词:移动机器人 同时定位和地图生成 顺序蒙特卡罗 粒子滤波器 哈夫变换 声纳
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222