检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学计算机与信息技术学院,北京100044
出 处:《北京电子科技学院学报》2006年第2期1-9,共9页Journal of Beijing Electronic Science And Technology Institute
基 金:国家自然科学基金资助项目(No.60472033)
摘 要:传统的SVM直接在线性条件下训练SVM分类器完成人脸与非人脸的分类,分类器训练困难,计算量大且速度慢。为构造一个复杂背景下人脸检测与定位的新方法,本文用核函数把SVM推广到非线性SVM,再与二叉树相结合,可以解决多类识别问题,此即KSVM决策树人脸检测方法。在此基础上,人脸面部特征被进一步确认。本文提出了改进的四边界Prewitt边缘算子提取人眼,进而定位五官。实验结果表明该方法检测率较高,虚警率较低,定位准确。Traditional SVM trains Support Vector Machines classifier directly under linear condition to sort face images and nonface images, and for such kind of classifier, the training is difficult. The amount of compute is big and the speed of training is slow. In order to make a new method of face detection and location in an image with complex background, SVM is extended to non-linear by using kernel functions. Then non-linear Support Vector Machines combine with binomial tree method to solve multi-classification's identification 'problems. It's named a method of face detection based on KSVM decision tree. Based on KSVM, face is further identified by face features. And paper presents an improved four-edge Prewitt edge operator to extract eyes in face image, and to locate nose and mouth. Experiments show that, compared with traditional SVM, the accuracy is higher, and the rate of false negative is lower, and location is exacter by using this method.
关 键 词:支持向量机 人脸检测 人脸面部特征 非线性 KSVM决策树 四边界Prewitt边缘算子
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3