Pontrjagin空间上一般算子代数弱闭和一致闭的等价条件  

Equivalence Conditions of Weakly and Uniformly Closeduess on the General Operator Algebra in Pontrjagin Space

在线阅读下载全文

作  者:杨海涛[1] 

机构地区:[1]广东海洋大学数学系

出  处:《数学学报(中文版)》2006年第4期857-860,共4页Acta Mathematica Sinica:Chinese Series

摘  要:本文研究Pontrjagin空间上一般算子代数弱闭和一致闭的等价条件,得到定理:设C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R)分别是Ⅱk空间上第0,Ⅰ,Ⅱa,Ⅱb,Ⅲa和Ⅲb类的算子代数,则(1)C0(U),C2a(U)或C3a(U)为一致闭(弱闭)的等价条件是U是Hibert空间G上的C*-代数(W*-代数;(2)C1(U,L,R,D,V)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间,V是闭算子,L对称闭的;(3)C2b(U,R)或C3b(U,R)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间.The main purpose of this paper is to study that problem, it is equivalent conditions of weakly and uniformly closed on the generate operator algebra in Pontrjagin space. We prove the following theorem: Suppose that C^0(U), C^1(U,L,R,D,V), C^2α(U), C^2b(U,R), C^3α(U), C^3b(U,R) are, respectively, classes 0, Ⅰ, Ⅱα, Ⅱb, Ⅲα and Ⅲb of general symmetric operator algebras on space Ⅱκ. Then (1) C^0(U), C^2α(U) or C^3α(U) is uniformly (weakly) closed if and only if U is C^*-algebra (W^*-algebra) on the Hilbert space H; (2) C^1 (U, L,R,D, V) is uniformly (weakly) closed if and only if U is C^*-algebra (W^*-algebra) on the Hilbert space H, and R is closed subspace, V is a closed operator, .L is symmetrically closed; (3) C^2b(U,R) or C^3b(U,R) is uniformly (weakly) closed if and only if U is C^*-algebra (W^*-algebra) on the Hilbert space H, and R is a closed subspace.

关 键 词:PONTRJAGIN空间 算子代数 一致闭 

分 类 号:O177.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象