变延迟微分方程一般线性方法的非线性稳定性  

Nonlinear Stability of General Linear Method for Delay Differential Equations with a Variable Delay

在线阅读下载全文

作  者:董点[1] 黄乘明[1] 

机构地区:[1]华中科技大学数学系,湖北武汉430074

出  处:《江西师范大学学报(自然科学版)》2006年第3期256-259,共4页Journal of Jiangxi Normal University(Natural Science Edition)

基  金:国家自然科学基金资助项目(10101027)

摘  要:讨论非线性变延迟微分方程初值问题一般线性方法的稳定性.对延迟量满足Lipschitz条件且最小Lipschitz常数小于1的一类方程获得带线性插值的一般线性方法的非线性稳定性结果.This paper is devoted to studying stability of general linear methods for delayed differential equations with a variable delay satisfying Lipschitz condition with the minimum Lipschitz constant L 〈 1 , and obtains some nonlinear stability results on general linear interpolation methods.

关 键 词:变延迟微分方程 一般线性方法 非线性稳定性 

分 类 号:O241.81[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象