检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南大学计算机与信息工程学院,河南开封475001
出 处:《系统工程与电子技术》2006年第7期1064-1066,1073,共4页Systems Engineering and Electronics
基 金:国家自然科学基金(60272024);河南省高校杰出科研人才创新工程项目(2003KYCX003);河南省高校创新人才培养工程;河南省自然科学基金(0411010400);河南大学科研基金(XK03YBTS066)资助课题
摘 要:针对非线性非高斯动态跟踪系统,提出一种基于序贯蒙特.卡洛粒子滤波的传感器管理方法。该方法首先利用粒子滤波计算目标的协方差;然后利用信息熵计算目标的信息增量;最后利用信息增量大小实现传感器资源对目标的分配。仿真结果表明,在非线性系统下,该方法对传感器管理具有较高的精确性、实时性和鲁棒性。For the dynamic tracking system which has stochastic state equation and nonlinear state or measurement equation non-Gaussian noise, a method of sensor management based on sequential Monte Carlo particle filtering is presented. Firstly, the covariance of targets is calculated by the method of particle filtering. Secondly, using the concept of information entropy, the information gain of targets is obtained. Finally, the sensor resources are allocated by maximizing the information gain. Simulation results show that this method is practical to the sensor management in a nonlinear system.
关 键 词:传感器管理 非线性系统 信息熵 信息增量 目标跟踪
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117