阶梯矩阵及其一般化在迭代法中的应用  被引量:2

Stair Matrices and Their Generalizations With Applications to Iterative Methods

在线阅读下载全文

作  者:邵新慧[1] 沈海龙[1] 李长军[1] 

机构地区:[1]东北大学理学院数学系,沈阳110004

出  处:《应用数学和力学》2006年第8期971-977,共7页Applied Mathematics and Mechanics

基  金:辽宁省自然科学基金资助项目(20022021)

摘  要:Lu Hao首先给出了阶梯矩阵及其一般性的定义和性质.这类矩阵为迭代法提供了新矩阵分裂的基础.基于此新矩阵类的迭代方法的显著特征是它对于并行计算很容易被实现.应用这一新的分解方法,给出了一般的加速松弛方法(GAOR),而关于AOR方法的一些性质可以被延伸到该新方法中,并针对Hermite正定矩阵进行了新方法收敛性的分析.最后,给出了一些例子来表明新方法的优越性.Stair matrices and their generalizations are introduced. The definitions and some properties of the matrices were first given by Lu Hao. This class of matrices provided bases of matrix splittings for iterative methods. The remarkable feature of iterative methods based on the new class of matrices is that the methods were easily implemented for parallel computation. In particular, a generalization of the accelerated overrelaxation method (GAOR) was introduced. Some theories of the AOR method were extended to the generalized method to include a wide class of matrices. The convergence of the new method was derived for Hermitian positive definite matrices. Finally, some examples are given in order to show the superiority of the new method.

关 键 词:阶梯矩阵 迭代法 平行计算 一般加速松弛方法(GAOR) 

分 类 号:O242.26[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象