基于子结构法构造用非协调元解椭圆型问题的预处理器(II)  

THE CONSTRUCTION OF PRECONDITIONERS FOR ELLIPTIC PROBLEMS DISCRETIZED BY NONCONFORMING FINITE ELEMENTS VIA SUBSTRUCTURING (II)

在线阅读下载全文

作  者:顾金生[1] 胡显承[1] 李岷珊[1] 

机构地区:[1]清华大学应用数学系,北方交通大学数学系

出  处:《计算数学》1996年第4期337-348,共12页Mathematica Numerica Sinica

基  金:国家自然科学基金

摘  要:基于子结构法构造用非协调元解椭圆型问题的预处理器(II)顾金生,胡显承(清华大学应用数学系)李岷珊(北方交通大学数学系)THECONSTRUCTIONOFPRECONDITIONERSFORELLIPTICPROBLEMSDISCRETIZEDBYN...Abstract Based on substructuring, several preconditioners are developed for second order self-adjoint elliptic problems discretized by a class of nonconforming finiteelements, which is only continuous at the mid-poieds of the elements' edges of thequasi-uniform mesh. They can be inversed in paxallel easily and applied to preconditioning the stiff matrix with the condition number no more than O((1 +in ) max (1 + H-2, 1 + In) ), where H, h are respectively the coarse and thefine mesh parameters. What is more important is that all the presented preconditioners are irrelevant to the internal crosspoints, so that it is unnecessary to solvethe coarse mesh equation in the preconditioning process.

关 键 词:椭圆型方程 非协调元  子结构法 预处理器 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象