检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统科学与数学》2006年第4期407-425,共19页Journal of Systems Science and Mathematical Sciences
基 金:国家自然科学基金资助课题(10371096)
摘 要:讨论了二维非定常不可压Navier-Stokes方程的两重网格方法.此方法包括在粗网格上求解一个非线性问题,在细网格上求解一个Stokes问题.采用一种新的全离散(时间离散用Crank-Nicolson格式,空间离散用混合有限元方法)格式数值求解N-S方程.证明了该全离散格式的稳定性.给出了L2误差估计.对比标准有限元方法,在保持同样精度的前提下,TGM能节省大量的计算量.A two-grid method for the unsteady Navier-Stokes equations modelling viscous incompressible flow is discussed in R^2, which consists of finding a solution for a nonlinear problem on a coarse grid and a solution for the Stokes problem on a fine grid. A new fully discrete scheme for the numerical solution of these equations is also considered where the spatial discreteness is the mixed finite elements and the temporal discreteness is the Crank-Nicolson scheme. The stability for this scheme is proved and an L2 error estimate is also given. Compared with the usual finite element method, this method can save a lot of computation time under the same convergence accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.78