检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《北京化工大学学报(自然科学版)》2006年第5期94-96,共3页Journal of Beijing University of Chemical Technology(Natural Science Edition)
摘 要:考虑流体的偏应力张量分量与速度梯度为非线性关系的情况,本构方程仅依赖于速度梯度的一阶导数。对满足强制性条件(τ)ij(e)eij≥ε1|e|γ,以及增长性条件|iτj(e)|≤ε2(1+|e|)γ的非牛顿粘性可压缩流体在三维有界区域中的流动进行了研究,其中ε1和ε2为正常数,e为速度梯度张量,τ是偏应力张量,iτj为τ的分量,它依赖于速度梯度张量。文章利用构造近似解和极限的过程证明了三维有界区域中非牛顿可压缩流体广义解的存在性,所用的证明方法为能量方法。In view of the non-linear relation between the hefts of the partial stress tensor and the velocity gradient of the fluid, the intrinsic equation only depends on the first order differential coefficient of the velocity gradient. We have studied a model of a non-Newtonian viscous compressible fluid in 3D bounded domains, in which the viscous part of the stress tensor satisfies the coerciveness condition (f)i(e)eii)≥ε1|e|^r and the values of the growth condition |rii(e)|≤ε2(1+|e|)^r.ε1,ε2 are positive constants. Here e is the tensor of the velocity gradient, t is the strain tensor and rij, which depends on the tensor of the velocity gradient, is the hefts of t. By means of deriving the approximate solution and a process of approaching iteration, we have shown that a general solution exists for a non-Newtonian compressible fluid in 3D bounded domains. The proof is based on an elementary energy method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222