三维有界区域中非牛顿可压缩流体的广义解  被引量:1

Generalized solution for a non-Newtonian viscous compressible fluid in 3D-bounded domains

在线阅读下载全文

作  者:李秋衡[1] 李艳军[1] 施小丁[1] 

机构地区:[1]北京化工大学理学院,北京100029

出  处:《北京化工大学学报(自然科学版)》2006年第5期94-96,共3页Journal of Beijing University of Chemical Technology(Natural Science Edition)

摘  要:考虑流体的偏应力张量分量与速度梯度为非线性关系的情况,本构方程仅依赖于速度梯度的一阶导数。对满足强制性条件(τ)ij(e)eij≥ε1|e|γ,以及增长性条件|iτj(e)|≤ε2(1+|e|)γ的非牛顿粘性可压缩流体在三维有界区域中的流动进行了研究,其中ε1和ε2为正常数,e为速度梯度张量,τ是偏应力张量,iτj为τ的分量,它依赖于速度梯度张量。文章利用构造近似解和极限的过程证明了三维有界区域中非牛顿可压缩流体广义解的存在性,所用的证明方法为能量方法。In view of the non-linear relation between the hefts of the partial stress tensor and the velocity gradient of the fluid, the intrinsic equation only depends on the first order differential coefficient of the velocity gradient. We have studied a model of a non-Newtonian viscous compressible fluid in 3D bounded domains, in which the viscous part of the stress tensor satisfies the coerciveness condition (f)i(e)eii)≥ε1|e|^r and the values of the growth condition |rii(e)|≤ε2(1+|e|)^r.ε1,ε2 are positive constants. Here e is the tensor of the velocity gradient, t is the strain tensor and rij, which depends on the tensor of the velocity gradient, is the hefts of t. By means of deriving the approximate solution and a process of approaching iteration, we have shown that a general solution exists for a non-Newtonian compressible fluid in 3D bounded domains. The proof is based on an elementary energy method.

关 键 词:可压缩非牛顿流体 有界区域 广义解 

分 类 号:O354[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象