检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:涂道兴
出 处:《西南石油学院学报》1996年第4期107-109,共3页Journal of Southwest Petroleum Institute
摘 要:设G为有限群,π为某素数集合。G的子群H称为G的π—S—拟正规子群,如果对每个P∈π,H与G的每个SylowP—子群可换。G称为Bp群,如果NG(P)为P-幂零群蕴含G为P-幂零群,其中P∈SylpG。本文证明了G为Pp群,如果G满足下列条件之一:(1)G的SylowP—子群P的每个极大子群为G的p—S—拟正规子群;(2)G的SylowP—子群P的每个二次极大子群为G的p—S—拟正规子群。et G be a finite group, and let be a set of primes. A subgroup H of G is called π-S-quasi-normal in G if H is permuted with every Sylow p-subgroup of G for every p in π. G is called a B p group if the existence of normal p-complements of N (P) implies that G itself as a normal p-complement, where PE Sylp G . In this paper, we have proved that G is a B p group if G satisfies one of the following conditions: (1) each maximal subgroup of a Sylow p-subgroup P of G is P'-S-quasi-mormal in G ; (2) each second maximal subguoup of a Sylow p-subgroup P of G is p'-S-quasi-normal in G .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.208.89