有限群为B_p群的两个充分条件  

Two Sufficient Conditions for a Finite Group as B p Group

在线阅读下载全文

作  者:涂道兴 

出  处:《西南石油学院学报》1996年第4期107-109,共3页Journal of Southwest Petroleum Institute

摘  要:设G为有限群,π为某素数集合。G的子群H称为G的π—S—拟正规子群,如果对每个P∈π,H与G的每个SylowP—子群可换。G称为Bp群,如果NG(P)为P-幂零群蕴含G为P-幂零群,其中P∈SylpG。本文证明了G为Pp群,如果G满足下列条件之一:(1)G的SylowP—子群P的每个极大子群为G的p—S—拟正规子群;(2)G的SylowP—子群P的每个二次极大子群为G的p—S—拟正规子群。et G be a finite group, and let be a set of primes. A subgroup H of G is called π-S-quasi-normal in G if H is permuted with every Sylow p-subgroup of G for every p in π. G is called a B p group if the existence of normal p-complements of N (P) implies that G itself as a normal p-complement, where PE Sylp G . In this paper, we have proved that G is a B p group if G satisfies one of the following conditions: (1) each maximal subgroup of a Sylow p-subgroup P of G is P'-S-quasi-mormal in G ; (2) each second maximal subguoup of a Sylow p-subgroup P of G is p'-S-quasi-normal in G .

关 键 词:有限群 西洛子群 正规子群 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象