应用递归神经网络学习周期运动吸引子轨迹  被引量:2

Learning the trajectories of periodic attractor using recurrent neural network

在线阅读下载全文

作  者:韩敏[1] 史志伟[1] 席剑辉[1] 

机构地区:[1]大连理工大学电子与信息工程学院,辽宁大连116023

出  处:《控制理论与应用》2006年第4期497-502,共6页Control Theory & Applications

基  金:国家自然科学基金资助项目(60374064).

摘  要:采用递归神经网络学习非线性周期运动的吸引子轨迹.网络的拓扑结构基于非线性系统的状态空间表达式,网络权值通过时序反向传播算法调整.探讨了不同样本轨迹和网络结构对递归神经网络预测性能的影响.神经网络的性能评估建立在多条测试样本轨迹的基础上,可以更为客观地评价递归神经网络预测性能.对van der Pol方程的仿真结果表明:网络的泛化能力对训练样本轨迹的依赖性较强,从不同训练轨迹上得到的递归神经网络性能差异较大;需要选择合适的递归神经网络结构参数以提高神经网络的泛化能力.A kind of RNN(recurrent neural network) is applied to the learning of periodic attractor trajectories for nonlinear system. The network topology is based on the state-space representation, and the network parameters are optimized by the back-propagation through time algorithm. Investigations are then conducted into the model performance influenced by different training trajectories and different structure parameters. The model evaluation rule is based on multi-trajectory, which makes the investigation more objective. Simulation results from the van der Pol system show that the generalization ability is dependent on the training trajectory, different trajectories result in a significant different prediction performance; Simulation results also show that the structure parameters of the neural network should be carefully chosen so that better generalization ability can be obtained.

关 键 词:递归神经网络 周期吸引子 泛化能力 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象