检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学电子与信息工程学院,辽宁大连116023
出 处:《控制理论与应用》2006年第4期497-502,共6页Control Theory & Applications
基 金:国家自然科学基金资助项目(60374064).
摘 要:采用递归神经网络学习非线性周期运动的吸引子轨迹.网络的拓扑结构基于非线性系统的状态空间表达式,网络权值通过时序反向传播算法调整.探讨了不同样本轨迹和网络结构对递归神经网络预测性能的影响.神经网络的性能评估建立在多条测试样本轨迹的基础上,可以更为客观地评价递归神经网络预测性能.对van der Pol方程的仿真结果表明:网络的泛化能力对训练样本轨迹的依赖性较强,从不同训练轨迹上得到的递归神经网络性能差异较大;需要选择合适的递归神经网络结构参数以提高神经网络的泛化能力.A kind of RNN(recurrent neural network) is applied to the learning of periodic attractor trajectories for nonlinear system. The network topology is based on the state-space representation, and the network parameters are optimized by the back-propagation through time algorithm. Investigations are then conducted into the model performance influenced by different training trajectories and different structure parameters. The model evaluation rule is based on multi-trajectory, which makes the investigation more objective. Simulation results from the van der Pol system show that the generalization ability is dependent on the training trajectory, different trajectories result in a significant different prediction performance; Simulation results also show that the structure parameters of the neural network should be carefully chosen so that better generalization ability can be obtained.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7