检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2006年第30期197-201,共5页Computer Engineering and Applications
基 金:国家自然科学基金资助项目(编号:70371026)
摘 要:个人信用评估是金融与银行界研究的重要内容。论文研究了三种朴素贝叶斯分类器信用评估模型的精度。在两个真实数据集上用10层交叉验证对朴素贝叶斯信用评估模型进行了测试,并与五种DavidWest的神经网络个人信用评估模型进行了对比。结果表明朴素贝叶斯分类器具有较低的分类误差,在信用评估中有优势。Personal credit scoring plays an important role in financial and banking industry.This paper investigates the credit scoring accuracy of three naive Bayesian classifier models.They are tested using 10-fold cross validation with two real world data sets,and compared with five neural network models of David West's.Results demonstrate that the naive Bayesian classifiers are competitive with neural network classifiers and predominant in credit scoring domain.
关 键 词:个人信用评估 朴素贝叶斯分类器 神经网络 10层交叉验证
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38