检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:万柏坤[1] 薛召军[1] 李佳[1] 王瑞平[2]
机构地区:[1]天津大学生物医学工程与科学仪器系,天津300072 [2]北京交通大学生物医学工程系,北京100044
出 处:《自然科学进展》2006年第11期1511-1516,共6页
基 金:国家自然科学基金(批准号:60471028;60501005)天津市重点学科建设基金(批准号:2000-31)资助项目
摘 要:不同模式分类算法具有性能各异的特征参数及识别效果,至今缺乏普适的评估和优选方法.文中尝试将临床诊断受试者操作特性(receiver operation characteristic,ROC)曲线应用于人工神经网络(artificial neural network,ANN)的参数优化与支持矢量机(support vector machine,SVM)的性能比较.试用结果表明,ROC曲线能兼顾灵敏度和特异性要求以综合评价分类器的识别性能;ROC曲线下面积作为量化指标可以直观有效地帮助优选分类阈值和比较不同分类器的性能优劣,值得推广应用于各种模式分类算法的科学实践.
关 键 词:模式识别 受试者操作特性曲线 人工神经网络 支持矢量机 分类器
分 类 号:TP319[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.217.16