检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学数学与计算科学学院,广西桂林541004
出 处:《桂林电子科技大学学报》2006年第5期395-398,共4页Journal of Guilin University of Electronic Technology
基 金:国家自然科学基金(10361003);广西自然科学基金(0542046)
摘 要:基于L-p空间是一类可分的B anach空间所具备的特点,定义了L-p空间上的lp-框架、B anach框架。H ilbert空间的框架具有很多好的性质,根据L-p空间与h ilbert空间的一些近似性,推广h ilbert空间的框架理论给出了L-p空间上的框架性质,并讨论了B anach框架与p-R iesz基的关系。L-p spaces are kinds of separable Banach space. Banach frame and l^P-frame in L-p spaces are defined with L-p spaces' characteristics. The nice properties of frames in Hilbert spaces have been discovered. In light of the similarity between L-p spaces and Hilbert spaces, we have explored the properties of l^P-frame and Banach frame in L-p spaces and given a discussion of the relation between Banach frame and P-Riesz basis in this paper.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229