检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许俊[1]
机构地区:[1]南京工程学院计算机工程系,江苏南京210000
出 处:《福建电脑》2006年第12期34-35,共2页Journal of Fujian Computer
摘 要:决策树是分类数据挖掘的重要方法。其中,经典ID3算法根据具有最大信息增益的属性对训练样本集进行分类,适用于离散型属性。C4.5算法延用了ID3算法的基本策略,增加了处理连续数值型属性的方法。本文在其基础上讨论了新的基于属性变换的离散化处理方法。该方法基于统计概率信息,依据概率属性的最佳分裂对应分裂连续属性,增加了决策树的分类精度。
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28