检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴静珠[1] 王一鸣[1] 张小超[2] 耿朝曦[1]
机构地区:[1]中国农业大学 [2]中国农业机械化科学研究院,北京100083
出 处:《农机化研究》2007年第1期155-158,共4页Journal of Agricultural Mechanization Research
基 金:国家863高技术研究发展计划资助项目(2003AA209012)
摘 要:将基于统计学理论的支持向量机(SVM)与近红外光谱分析技术相结合,对真假奶粉进行分类判别。以50个奶粉样品作为实验材料,通过SVM建立识别真假奶粉的模型。实验中采用高斯径向基函数(RBF)为核函数,根据SVM的不同输入量调整核参数γ建立最佳SVM模型,对学习机的38个样品识别率可达到100%,对预测集12个奶粉样品预测率可达到100%。实验表明,应用支持向量机—近红外光谱法建立判别真假奶粉的近红外定性分析模型,为真假奶粉的判别提供一个方便快捷的分析方法。Support vector machines (SVM) and the Fourier transform near infrared spectrometry (NIRS) have firstly been combined to build a classifier to identify standard and sub:standard milk powder. The radial basis ftmction is adopted as a kernel function of SVM. The effect of RBF parameter; which is adjusted according to the different input of SVM, is investigated. The training set is composed of:38 samples and the testing set is composed of 12samples. The correct classification ratio of the training set is up to 100%, while that of the testing set is up to 100%. The research results show that the combination of SVM and NIRS can be used as a fast and convenient tool to identify standard and sub-standard milk powder.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145