支持向量机—近红外光谱法用于真假奶粉的判别  被引量:16

Applied Study on Support Vector Machines in Identifying Standard and Sub-standard Milk Powder with NIR Spectrometry

在线阅读下载全文

作  者:吴静珠[1] 王一鸣[1] 张小超[2] 耿朝曦[1] 

机构地区:[1]中国农业大学 [2]中国农业机械化科学研究院,北京100083

出  处:《农机化研究》2007年第1期155-158,共4页Journal of Agricultural Mechanization Research

基  金:国家863高技术研究发展计划资助项目(2003AA209012)

摘  要:将基于统计学理论的支持向量机(SVM)与近红外光谱分析技术相结合,对真假奶粉进行分类判别。以50个奶粉样品作为实验材料,通过SVM建立识别真假奶粉的模型。实验中采用高斯径向基函数(RBF)为核函数,根据SVM的不同输入量调整核参数γ建立最佳SVM模型,对学习机的38个样品识别率可达到100%,对预测集12个奶粉样品预测率可达到100%。实验表明,应用支持向量机—近红外光谱法建立判别真假奶粉的近红外定性分析模型,为真假奶粉的判别提供一个方便快捷的分析方法。Support vector machines (SVM) and the Fourier transform near infrared spectrometry (NIRS) have firstly been combined to build a classifier to identify standard and sub:standard milk powder. The radial basis ftmction is adopted as a kernel function of SVM. The effect of RBF parameter; which is adjusted according to the different input of SVM, is investigated. The training set is composed of:38 samples and the testing set is composed of 12samples. The correct classification ratio of the training set is up to 100%, while that of the testing set is up to 100%. The research results show that the combination of SVM and NIRS can be used as a fast and convenient tool to identify standard and sub-standard milk powder.

关 键 词:畜牧学 支持向量机 试验 近红外 奶粉 径向基函数 

分 类 号:S818.9[农业科学—畜牧学] O657.33[农业科学—畜牧兽医]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象