检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学仪器科学与光电工程学院,北京100083
出 处:《北京航空航天大学学报》2006年第11期1273-1276,共4页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金资助项目(60574086);新世纪优秀人才支持计划资助项目(NCET-04-0162)
摘 要:天文导航系统是典型的非线性和噪声非高斯分布的系统.针对传统的扩展卡尔曼滤波不适于非线性和噪声非高斯分布的系统,和一般粒子滤波存在的粒子退化和采样枯竭问题,提出了一种基于遗传算法进行再采样的月球探测器自主天文导航粒子滤波新方法.计算机仿真结果显示了该方法可以有效的克服传统粒子滤波方法的缺点,提高天文导航系统的定位精度.Autonomous celestial navigation system is a typical nonlinear, non-Gaussian dynamic system. Extended Kalman filter (EKF) is widely used in spacecraft navigation. It only uses the first order terms in the Taylor series expansion. To nonlinear and non-Gaussian system, EKF may introduce large estimation error. Particle filter(PF) is a computer-based method for implementing a recursive Bayesian filter by Monte Carlo simulations. PF is an effective solution at dealing with nonlinear and/or non-Gaussian problems. The performance of PF relies on the choice of importance sampling density and resampling scheme. To overcome the particle degeneration and sample impoverishment problems existing in traditional particle filter method, a new autonomous celestial navigation method for lunar explorer based on genetic algorithm particle filter method is presented. Simulation results demonstrat the validity and feasibility of this new method.
关 键 词:月球探测 自主天文导航 粒子滤波 遗传算法 扩展卡尔曼滤波
分 类 号:V448.2[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173