检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津工业大学数学研究所数学系,天津300160
出 处:《系统科学与数学》2006年第6期651-657,共7页Journal of Systems Science and Mathematical Sciences
基 金:国家自然科学基金资助课题(10471003;10271001).
摘 要:主要研究Browder-Petryshyn型的严格伪压缩映射的粘滞迭代逼近过程,证明了Browder-Petryshyn型的严格伪压缩映射的不动点集F(T)是闭凸集.在q-一致光滑且一致凸的Banach空间中,对于严格伪压缩映射T,利用徐洪坤在2004年引进的粘滞迭代得到的序列弱收敛于T的某个不动点.同时证明了Hilbert空间中Browder-Petryshyn型的严格伪压缩映射的相应迭代序列强收敛到T的某个不动点,其结果推广与改进了徐洪坤2004年的相应结果.In this paper, we study viscosity approximation process for strictly pseudo-contractive mapping T of Browder-Petryshyn type and prove that the fixed point set F(T) is a closed convex subset. We obtain a weak convergence theorem of strictly pseudocontractive self-mapping T of a closed convex subset K of a q-uniformly smooth Banach space which is also uniformly convex using viscosity approximation process {xt}, where xt = tf(xt) + (1 - t)Txt, f is an L-Lipschitz strongly pseudocontractive maping. We also prove that {xt} strongly converge to a fixed point of T which solves some variational inequality in Hilbert space. The results extend and improve the corresponding results of Xu Hongkun(2004).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.157.160