检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何苗[1] 蒋本铁[2] 李建华[3] 付志民[3] 范玉 周宝森[5]
机构地区:[1]中国医科大学附属第一医院计算机室,辽宁沈阳110001 [2]东北大学计算机中心 [3]中国医科大学基础医学院病理学教研室 [4]北京新顺国际有限公司 [5]中国医科大学公共卫生学院流行病学教研室
出 处:《中国医科大学学报》2006年第1期79-81,共3页Journal of China Medical University
基 金:辽宁省教育厅科研基金资助项目(202013137);(05L534)
摘 要:目的:探讨径向基(RBF)人工神经网络在宫颈细胞图像识别中的应用。方法:提取宫颈细胞和细胞核的15个形态学特征参数及12个色度学特征参数,对700个宫颈细胞按正常、低度鳞状上皮内病变(LSIL)、高度鳞状上皮内病变(HSIL)、宫颈癌进行分类识别。利用软件STATISTICA 7.0建立网络模型并训练,用VC++.NET语言调用网络。结果:RBF网络对训练集的拟合度为97.3%,对测试集的分类准确率为95.4%。在测试集中,正常细胞的识别率为96%,LSIL细胞识别率为94%,HSIL细胞识别率为100%,癌细胞识别率为88%。RBF网络输入参数的敏感度排序与细胞病理学特征基本一致。结论:RBF人工神经网络可以很好的对宫颈细胞特别是HSIL细胞进行分类识别。Objective: To investigate the possibility of applying artificial neural network based on radial basis function (RBF) to image recognition of cervical cells. Methods: According to 15 morphologie parameters and 12 chromatic parameters of cervical cells, 700 cervical ceils were classified as normal ceils, lowgrade squamous intrsepithelial lesion (LSIL) cells, high-grade squamous intraepithelial lesion (HSIL) ceils, and cervical cancer ceils. STATISTICA 7.0 was used to establish and train the neural network model, and VC ++. NET was used to call the model. Results:The goodness of fit of the neural network model in training set was 97.3%, and the classification accuracy in testing set was 95.4%. In testing set, the recognition rate was 96% in normal ceils, 94% in LSIL cells, 100% in HSIL cells, and 88% in cervical cancer cells. The sensitivity order of input parameters in the RBF artificial neural network was approximately consistent with that of characteristics of ceil pathology. Conclusion: Cervical cancer cells, especially HSIL cells, can be well recognized by RBF artificial neural networks. RBF neural network can be widely applied in computer aided diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15