径向基人工神经网络在宫颈细胞图像识别中的应用  被引量:9

Application of radial basis function artificial neural network in image diagnosis of cervical cells

在线阅读下载全文

作  者:何苗[1] 蒋本铁[2] 李建华[3] 付志民[3] 范玉 周宝森[5] 

机构地区:[1]中国医科大学附属第一医院计算机室,辽宁沈阳110001 [2]东北大学计算机中心 [3]中国医科大学基础医学院病理学教研室 [4]北京新顺国际有限公司 [5]中国医科大学公共卫生学院流行病学教研室

出  处:《中国医科大学学报》2006年第1期79-81,共3页Journal of China Medical University

基  金:辽宁省教育厅科研基金资助项目(202013137);(05L534)

摘  要:目的:探讨径向基(RBF)人工神经网络在宫颈细胞图像识别中的应用。方法:提取宫颈细胞和细胞核的15个形态学特征参数及12个色度学特征参数,对700个宫颈细胞按正常、低度鳞状上皮内病变(LSIL)、高度鳞状上皮内病变(HSIL)、宫颈癌进行分类识别。利用软件STATISTICA 7.0建立网络模型并训练,用VC++.NET语言调用网络。结果:RBF网络对训练集的拟合度为97.3%,对测试集的分类准确率为95.4%。在测试集中,正常细胞的识别率为96%,LSIL细胞识别率为94%,HSIL细胞识别率为100%,癌细胞识别率为88%。RBF网络输入参数的敏感度排序与细胞病理学特征基本一致。结论:RBF人工神经网络可以很好的对宫颈细胞特别是HSIL细胞进行分类识别。Objective: To investigate the possibility of applying artificial neural network based on radial basis function (RBF) to image recognition of cervical cells. Methods: According to 15 morphologie parameters and 12 chromatic parameters of cervical cells, 700 cervical ceils were classified as normal ceils, lowgrade squamous intrsepithelial lesion (LSIL) cells, high-grade squamous intraepithelial lesion (HSIL) ceils, and cervical cancer ceils. STATISTICA 7.0 was used to establish and train the neural network model, and VC ++. NET was used to call the model. Results:The goodness of fit of the neural network model in training set was 97.3%, and the classification accuracy in testing set was 95.4%. In testing set, the recognition rate was 96% in normal ceils, 94% in LSIL cells, 100% in HSIL cells, and 88% in cervical cancer cells. The sensitivity order of input parameters in the RBF artificial neural network was approximately consistent with that of characteristics of ceil pathology. Conclusion: Cervical cancer cells, especially HSIL cells, can be well recognized by RBF artificial neural networks. RBF neural network can be widely applied in computer aided diagnosis.

关 键 词:径向基 人工神经网络 计算机辅助诊断 

分 类 号:R711.74[医药卫生—妇产科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象