检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学土木水利学院,辽宁大连116024 [2]长春自然灾害预测研究服务中心,吉林长春130022
出 处:《水文》2006年第6期30-32,共3页Journal of China Hydrology
摘 要:针时水文预测建模中输入因子过多而导致神经网络结构规模过大,泛化能力差的问题,利用主成分分析和贝叶斯正则化方法对神经网络进行改进,优化网络结构,从而提高泛化能力。以洮儿河流域镇西站年最大洪峰流量预测为例,研究结果表明,改进的神经网络预测方法与传统的神经网络方法相比,泛化能力有显著提高,而且网络的收敛也比较稳定,实际预测中效果良好。Aiming at the complex framework of hydrology prediction model of neural network, which leads to decrease the prediction precision, the paper gave a model using principal component analysis and Bayesian regulation. Taking the annual peak discharge at Zhenxi Station as an example, it showed that the method could effectively reduce the size of the model and the generalization capability of the model was better than the traditional neural network.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143