检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东科技大学信息科学与工程学院
出 处:《计算机应用》2007年第1期84-85,共2页journal of Computer Applications
基 金:国家自然科学基金资助项目(10571109)
摘 要:从测试点的类别判断方式上进行改进,对容易错分的测试点给予多次判别机会,从而降低了SVM决策树的错分累积程度。仿真试验表明,改进的基于SVM决策树判别测试点类别方法与传统的基于SVM决策树判别测试点类别方法相比,具有较高的分类精度。By giving the test sample many decision chances, a new method for deciding the sort of the test sample based on Support Vector Machine (SVM) decision tree was given. The new decision method reduces the degree of error accumulation. Experimental results show that the new decision method based on SVM decision tree yields higher precision than the traditional method.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38