线性定常系统的δ-算子描述──能控性与能稳性  被引量:4

Controllability and Stabilizability of Linear Time-Invariant Systems in the Delta Operator Descriptions

在线阅读下载全文

作  者:邹云[1] 杨成梧[1] 翟长连 

机构地区:[1]南京理工大学动力工程学院

出  处:《控制理论与应用》1996年第4期527-531,共5页Control Theory & Applications

基  金:自然科学基金

摘  要:本文讨论了δ-算子描述下的线性定常系统的能控性与能稳性问题.研究结果表明:虽然两种描述(即传统的q-算子描述和本文讨论的δ-算子描述)方法下的能控性定义及判据形式上并无二致,然而在高速采样的条件下,两种描述方法下的系统的能控度与能稳度呈现出完全相反的特性,一般而言,δ-算子描述方法更加适合高速采样情形.In this paper, the problems of controllability and stabilizability for the linear time-inviariant systems based on delta operator model are discussed. It is shown that the controllability and stabilizability margins of this new model, at least in the case of high-speed sampling rate, is much more closed up to its continuous counterparts than that of the traditional models based on shift operators is,while the latter equal o (τ), where r represents the sampling step. However, the corresponding criteria for the controllabilityand stability of the models are all the same as those traditional results in form.

关 键 词:δ-算子 能控性 能稳性 线性系统 线性定常系统 

分 类 号:TP271[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象