检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《现代防御技术》2007年第2期84-88,共5页Modern Defence Technology
基 金:全国优秀博士学位论文作者专项资金资助(200237)
摘 要:系统偏差严重影响了多部雷达航迹的互联和目标状态的融合,因此如何解决误差配准成为一个关键问题。因为系统偏差和雷达的量测之间是一种非线性关系,所以无法直接使用Kal-man等线性滤波直接进行系统偏差的估计。为解决这一问题,利用非线性的粒子滤波器(PF),对目标状态和系统偏差的估计进行了探讨,为了对比其性能,设计了一种扩展Kalman滤波算法。仿真结果表明PF在误差配准中的应用是可行的,性能高于扩展Kalman滤波。Radar registration becomes a key problem because of its heavy effect on radar data fusion. The extended Kalman filter (EKF) is generally used to linearize the state or measure equations of the nonlinear system, and the linear method can be used. Because of the hard nonlinearity between alignment and radar measure, however,the performance of the EKF may not be good due to the linearization error. In this paper a new method is proposed. Firstly, the method transforms the measure equation of the system, so the colore noise of the equation can be changed into white noise. Then, particle filter (PF) is used to estimate the state of the system. The results of the simulation show that the new method is useful and effective, compared with EKF,it can effectively get the more precision state estimation of the nonlinear system.
分 类 号:TN957.5[电子电信—信号与信息处理] TN713[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222