微分流形及其应用的某些注释(英文)  

Some remarks on differential manifolds and their applications

在线阅读下载全文

作  者:赵培标[1] 

机构地区:[1]南京理工大学应用数学系,南京210094

出  处:《周口师范学院学报》2007年第2期4-10,共7页Journal of Zhoukou Normal University

基  金:Supported by a Grant-in-Aid for Scientific Research from Nanjing University of Science and Technology(No.AB96137)a;partially by the National Natural Science Foundation of China(No.10471063)

摘  要:基于黎曼流形及次黎曼流形在控制论、动力系统、规范场论等领域中的广泛应用的事实,本文拟对作为研究生课程的《微分流形及其应用》给出研习该课程的一般方法和思路.作为一个应用,用微分流形的语式给出Hamilton-Jacobi-Equations表示式.The studies of differential manifolds and their applications are motivated to the active fields with applications of Riemanian manifolds and Sub-Riemannian manifolds in Control Theory, Dynamics Theory, Gauge Fields, etc. We here investigate the ideas and approaches of differential manifolds as a course for postgraduates, and give out the thought of trains with studying this subject. As a conclusion, we also obtain the well known Hamilton-Jacobi-Equations in differential manifold languages.

关 键 词:黎曼流形 次黎曼流形 方向导数 共变导数 联络 

分 类 号:O186.20[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象