含正弦扰动奇异摄动时滞系统的最优减振控制  被引量:1

Optimal damping control for singularly perturbed time-delay systems with sinusoidal disturbances

在线阅读下载全文

作  者:张宝琳[1,2] 唐功友[1] 

机构地区:[1]中国海洋大学信息科学与工程学院,山东青岛266071 [2]中国计量学院数学与信息科学系

出  处:《控制理论与应用》2007年第2期255-260,共6页Control Theory & Applications

基  金:国家自然科学基金(60574023);山东省自然科学基金(Z2005G01);青岛市自然科学基金(05-1-JC-94)

摘  要:研究奇异摄动时滞系统在正弦扰动下的最优减振控制问题.基于奇异摄动的快慢分解理论,将原最优控制问题转化为无时滞快子问题和受扰线性时滞慢子问题,通过摄动法和前馈补偿技术求解时滞慢子系统的最优控制问题,得到了系统的前馈反馈组合控制(FFCC)律及其存在唯一性条件.FFCC律由线性解析项和共态向量无穷级数和表示的时滞补偿项组成,其中线性解析项可通过求解Riccati方程和Sylvester方程得到,时滞补偿项通过递推求解共态向量方程得到,仿真算例表明了方法的有效性.The optimal damping control design for singularly perturbed time-delay systems affected by external sinusoidal disturbances is considered. Based on the slow-fast decomposition theory of singular perturbation, the system is first decomposed into a fast subsystem and a slow time-delay subsystem with disturbances. Then, the perturbation method is proposed to solve the slow time scale time-delay optimal control problem, and the feedforward compensation technique is used to reject the disturbances. The conditions of existence and uniqueness of the feedforward and feedback composite control (FFCC) law are also obtained. The FFCC law consists of linear analytic terms and a time-delay compensation term which is a series sum of adjoint vectors. The linear analytic terms can be found by solving Riccati matrix equation and Sylvester equation respectively. The compensation term can be approximately obtained by a recursion formula of adjoint vector equation. Finally, numerical examples are presented to illustrate the effectiveness of the proposed design method.

关 键 词:奇异摄动系统 时滞 最优控制 摄动法 正弦扰动 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象