检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学应用数学系 [2]浙江海洋学院数理与信息学院,浙江舟山316004
出 处:《计算数学》2007年第2期163-176,共14页Mathematica Numerica Sinica
基 金:国家自然科学基金(10471015);归国留学人员科研启动基金资助项目.
摘 要:本文构造的求解非线性优化问题的微分方程方法包括两个微分方程系统,第一个系统基于问题函数的一阶信息,第二个系统基于二阶信息.这两个系统具有性质:非线性优化问题的局部最优解是它们的渐近稳定的平衡点,并且初始点是可行点时,解轨迹都落于可行域中.我们证明了两个微分方程系统的离散迭代格式的收敛性定理和基于第二个系统的离散迭代格式的局部二次收敛性质.还给出了基于两个系统的离散迭代方法的数值算例,数值结果表明基于二阶信息的微分方程方法速度更快.The differential equation method in this paper consists of two differential equation systems, in which the first one is based on the first order information on problem functions and the second system is based on the second order information. These two systems possess the properties that the local minimum point is their asymptotically stable equilibrium point and the whole solution trajectories are in the feasible region of the problem if they start from initial feasible points. We prove the convergence theorems for their discrete schemes and the locally quadratic convergence property for the discrete method based on the second differential equation system. We give numerical examples based on these two discrete methods and the numerical results show that the differential equation system based on the second information is faster than the first one.
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222