检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武警工程学院,陕西西安710086 [2]咸阳师范学院,陕西咸阳712000
出 处:《咸阳师范学院学报》2007年第2期1-4,共4页Journal of Xianyang Normal University
基 金:咸阳师范学院科研基金项目(04XSYK205)
摘 要:在正规线性空间上讨论微分方程系统X′(t)=F(t,x,y)X′(t)=ε.G(t,x,y),这里参数ε很小。证明了如果F和G满足Lipschitz条件,F(t,x,y)对y的小的值是指数稳定的,系统在x和y对1/ε阶时间周期的持久扰动是稳定的。考虑扰动系统X′(t)=F(t,x,y)+J(t),X′(t)=ε.G(t,x,y)+K(t),这里J(t)和K(t)从S到S+1的积分值很小。从而得到存在仅依赖于F和G的常数A,B,C和λ,使对σ≤λ,如果初始值和持久扰动比σ小,且ε≤σ,则解X(t)和Y(t)对一切时间t有界σAeBtε,使得σeBtε≤C。This paper concerns system differential equations of the formX' (t)=F (t,x,y)Y' (t)=ε.G (t,x,y)In a normed linear space, where the parameter εis small. We prove a theorem which shows that ifF and G are Lipschitz and F(t,x,y) is exponentially stable for small values of Y, then the system is stable for persistent disturbances in X and Y for a period of time of order 1/8. We consider the perturbed systemX'(t)=F(t,x,y)+J(t)Y'(t)=ε.[G(t,z,y)+K(t)] Where all the integrals of J(t) and K(t) fi'om s to s+1 are small. The theorem states that there are constant A,B,C andλwhich depend only on F and G such that for any δ≤A, if the initial values and persistent disturbance, are smaller then δ and ε≤ δ then the solutions X(t) and Y(t) are bounded by δAe^Btε for all times t such that δAe^Btε ≤C
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30