检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009
出 处:《计算机应用》2007年第5期1041-1043,共3页journal of Computer Applications
摘 要:传统的决策树分类方法(如ID3和C4.5)对于相对小的数据集是很有效的。但是,当这些算法用于入侵检测这样的非常大的数据时,其有效性就显得不足。采用了一种基于随机模型的决策树算法,在保证分类准确率的基础上,减少了对系统资源的占用,并设计了基于此算法的分布式入侵检测模型。最后通过对比试验表明该模型在对计算机入侵数据的分类上有着出色的表现。The traditional decision tree category methods (such as" ID3, CA. 5) are effective on small data sets. However, when these methods are applied to massive data of IDS, its effectivity will get influenced. In this paper, a random model based decision tree algorithm was applied, and an intrusion detection model based on it was provided. It is verified by experiment that this model is evidently powerful for IDS.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117