检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:颜学峰[1]
出 处:《化工自动化及仪表》2007年第3期11-15,共5页Control and Instruments in Chemical Industry
基 金:国家自然科学基金资助项目(20506003);教育部科学技术研究重点项目(106073);上海启明星项目(04QMX1433)
摘 要:针对三层神经网络(ANN)最佳隐节点个数难以确定和随着隐节点个数增加ANN模型易出现过拟合等缺点,提出了嵌入岭回归(RR)的误差反传算法(BP)。BP-RR根据样本规模自适应确定隐节点个数,并通过BP算法充分提取样本数据信息。然后,针对隐含层输出可能存在的复共线性,采用RR以预测性能为指标,通过进化算法确定最佳岭参数,进而重新确定隐含层与输出层之间最佳的权值和阈值,克服ANN过拟合,建立具有良好预测性能的模型。将BP-RR应用于建立石脑油干点软测量,结果显示,BP-RR模型具有良好的预测性能。与ANN相比,BP-RR模型鲁棒性强,预测精度高。To overcome the two main flaws of three-layer artificial neural network, i. e. tendency to overfitting and difficulty to determine the optimal number of hidden layer nodes, a modified errors back propagation algorithm containing ridge regression (BP-RR) is proposed. BP-RR determines the number of the hidden layer nodes according to the number of observed vectors in training sample. Firstly, BP is applied to learn from the training sample to the best of its abilities. Secondly, considering that there exists the outstanding correlation or multicollinearity among the hidden-layer-node output data, ridge regression is employed to obtain the optimal weights associated the hidden layer nodes with output layer nodes and the optimal thresholds of the output layer nodes instead of the original values obtained by BP; and then the model with the good predict ability is developed. The ridge regression uses an evolution algorithm to optimize ridge parameter according to the predict accuracy of the model. Further, BP-RR is employed to develop the naphtha dry point soft sensor. The results show that the good predict ability model with the robust character is obtained, and that the predict accuracy of BP-RR is superior to that of ANN.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15