检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]齐齐哈尔师范高等专科学校,黑龙江省齐齐哈尔161005
出 处:《齐齐哈尔师范高等专科学校学报》2007年第3期125-126,共2页Journal of Qiqihar Junior Teachers College
基 金:黑龙江省高等教育学会"十一五"规划课题。编号:115C-557;课题名称:数学分析教学中的改革与实践
摘 要:数学分析中宜于用反证法证明总的原则是:对于所要论证的论题(若A则B),没有直接证明的正面根据,此时运用反证法证明,只要证明其反论题(若A则不B)的谬误即可。运用反证法证明的习题类型及规律是:1.证明“函数某个特定常数”;2.在已知极限存在或易证出极限存在的前提下,证明“极限等于零”或“极限等于某个特定常数”;3.证明有关“不存在”的题目;4.证明“至少有一点”的题目,对于题设中函数不具连续条件者,有时宜于用实数理论找点,再用反证法证明为所求;5.证明集合个数为“有限个”;6.证明“函数有界性”;7.证明“最多只有”的题目;8.证明“唯一性”。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15