线性约束下双对称矩阵的最佳逼近问题  被引量:1

The Optimal Approximation Problems of Bisymmetric Matrix Under the Linear Restriction

在线阅读下载全文

作  者:林玲[1] 

机构地区:[1]广东外语外贸大学信息科学技术学院,广东广州510420

出  处:《武汉大学学报(理学版)》2007年第3期267-270,共4页Journal of Wuhan University:Natural Science Edition

基  金:国家自然科学基金资助项目(60572114)

摘  要:将求矩阵方程AX=B双对称解的问题等价地转化为求一类矩阵方程对称解的问题.通过后者容易得出矩阵方程AX=B的双对称解,给出了解集合的表达式.研究了矩阵方程AX=B的双对称解集合的最佳逼近问题.当矩阵方程AX=B有双对称解时,其最佳逼近解存在且惟一,给出了最佳逼近解的表达式.Based on sufficiently studying properties of bisymmetric matrices, solving the bisymmetric solutions of the matrix equation AX=B is equivalently reformulated into the problem for solving symmetric solutions of a class of matrix equations. By means of common solutions of the simple latter problem, bisymmetric solutions of the matrix equation AX=B are easily obtained and the expression of the solution set is also given. Moreover,the optimal approximation problem of the bisymmetric solution set of the matrix equation AX=B is also studied. When the matrix equation AX=B has an bisymmetric solution,its optimal approximation solution exists uniquely. The expression of the optimal approximation solution is provided.

关 键 词:双对称矩阵 矩阵范数 最佳逼近 

分 类 号:O241.6[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象