检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学理学院,陕西西安710055
出 处:《应用数学》2007年第3期512-518,共7页Mathematica Applicata
基 金:Supported by The National Natural Science Foundation of China(10071068)
摘 要:我们考虑问题K(x)uxx=utt,0<x <1,t≥0,其中K(x)≥α≥0,u(0,t) =g,ux(0,t) =0.这是一个不适当的方程,因为当解存在时在边界g上一个小的扰动将对它的解造成很大的改变.我们考虑存在解u(x,·) ∈L2(R)用小波伽辽金方法和Meyer多分辨分析去滤掉高频部分,从而在尺度空间Vj上得到适定的近似解.我们也可以得到问题的准确解与它在Vj上的正交投影之间的误差估计.We consider the problem K(x)ua = ua, 0〈x〈1, t≥0 , where K(x) is bounded below by a positive constant. The solution on the boundary x = 0 is a known function g and ux (0,t) = 0. This is an ill-posed problem in the sense that a small disturbance on the boundary specification g can produce a big alteration on its solution,if it exists. We consider the existence of a solution u(x,·) ∈ L^2 (R) and we use a wavelet Galerkin method with the Meyer multi-resolution analysis, to filter away the high-frequencies and to obtain well-posed approximating problems in the scaling spaces V~ . We also derive an estimate for the difference between the exact solution of the problem and the orthogonal projection onto Vj .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.122.6