检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学计算机工程与科学学院,上海200072 [2]山西大学数学科学学院,山西太原030006
出 处:《小型微型计算机系统》2007年第7期1306-1310,共5页Journal of Chinese Computer Systems
基 金:国家自然基金项目(60573074)资助;山西省自然科学基金项目(20041040)资助;山西省科技攻关项目(051129)资助;山西省青年科技基金项目(20031027)资助
摘 要:提出一种基于最大熵模型和投票法的汉语动词与动词搭配识别方法.该方法通过组合目标动词与候选搭配词的上下文词性信息以及关联程度的统计信息构成5种复合特征模板,然后利用最大熵方法获得它们对应搭配识别器,最后采用最好搭配识别器占优的投票法构造组合识别器.实验结果表明,同时包含上下文词性信息和统计信息的识别器优于单纯包含上下文词性信息或统计信息的识别器,但最好搭配识别器占优的组合识别器效果更佳.In this paper,a method for verb-verb collocation recognition is proposed based on maximum entropy model and voting. Firstly, by combining some information about part of speech in context and the associations' strength between target verbs and candidate collocation verbs,5 kinds of composite feature templates are constructed. And then the corresponding discriminators are obtained by using maximum entropy model. Lastly,a combined discriminator is established by voting of the best dis- criminator priority. The experiment results indicate that discriminators with both information about part of speech in context and information about the strength of associations between target verbs and collocation verbs are more efficient than that only with single information respectively, however, the combined discriminator is the best.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222