检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学计算机科学与技术系,上海200092
出 处:《计算机工程》2007年第3期208-209,212,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60475019)
摘 要:提出了Real-Adaboost的一种改进算法。该算法采用预先计算类Haar特征所对应弱分类器在样本空间的划分,并动态更新人脸训练样本的权值。与以往的Real-Adaboost算法比较,该算法大大缩短了训练时间,算法训练时间复杂度降到O(T*M*N),同时加速了强分类器的收敛性能,减少检测器的弱分类器数量,减少检测时间。This paper proposes a novel human face detection algorithm based on real Adaboost algorithm. Policy that calculates in advance the partitioning of Haar-like feature weak classifiers in sample input space and updating training face samples' weights dynamically is adopted. This algorithm reduces training time cost greatly compared with classical real-Adaboost algorithm. In addition, it speeds up strong classifier converging, reduces the number of weak classifiers and decreases detecting time.
关 键 词:人脸检测 实值Adaboost 类HAAR特征 层叠分类器 动态权值
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.121.244