检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘俊[1]
出 处:《复旦学报(自然科学版)》2007年第2期184-191,共8页Journal of Fudan University:Natural Science
基 金:国家自然科学基金资助项目(10125102)
摘 要:探讨了有理PH曲线的G1 Hermite插值问题,运用复数表达将问题转化为包含5个复代数方程的方程组,通过求解这个方程组,得到结论:当插值条件形成凸多边形时,插值问题有2个解,其中之一为多项式解;而当插值条件形成非凸多边形时,只有切方向满足一定条件时,插值问题才有一个解.而对于后一种情况,总可以通过加点的方式细分原逼近曲线,进而得到由两段有理三次PH曲线G1拼接而成的4组样条插值曲线.The G^1 Hermite interpolation by Rational Pythagorean Hodograph Cubics is discussed. By means of complex representation the problem is transformed to a system of complex equations with 5 complex algebraic equations. By solving this system, the following results are obtained. There are 2 solutions(especially one is a polynomial solution), when the conditions form a convex polygon. And with the concave polygon conditions, there is no solution unless the tangents satisfy some special conditions. But four solutions constituted with two G^1 PH rational cubic segments always can be got by means of adding points between the former extreme points.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3