一种基于免疫和Hopfield神经网络的多峰值优化算法  

New algorithm for multimodal function optimization based on immune algorithm and Hopfield neural network

在线阅读下载全文

作  者:周瑞英[1] 顾军华[1] 李娜娜[1] 谭庆[1] 

机构地区:[1]河北工业大学计算机科学与软件学院,天津300130

出  处:《计算机应用》2007年第7期1751-1753,1756,共4页journal of Computer Applications

基  金:天津自然科学基金资助项目(05YFJMJC05700);河北省自然科学基金资助项目(F2006000109)

摘  要:分析了免疫算法和Hopfield神经网络的优缺点,提出了一种解决多峰值函数优化问题的混合算法。Hopfield神经网络易于硬件实现,具有简单、快速的优点,但是对初始值具有依赖性以及容易陷入局部极值。免疫算法具有识别多样性的特点,但搜索效率和精度不高。将两算法结合起来,优势互补。首先用免疫算法寻优,然后对所得具有全局多样性的解进行聚类分析,所得聚类中心作为Hopfield神经网络的初始搜索点,最后利用Hopfield神经网络逐个寻优。实验表明,该算法是一种有效的求解多峰函数优化问题的方法,与免疫算法相比,搜索效率和精度都较高。Based on the analysis of immune theory and Hopfield neural network (HNN), a new algorithm for multimodal function optimization was proposed. This new algorithm had the advantages of both HNN and immune algorithm (IA), and it showed excellent characteristics in optimization of muhimodal function. In detail, a group of solutions with variety were taken by IA first; and then the solutions were partitioned into some clusters. Finally cluster centroids returned by clustering algorithm were taken as the initial value of each HNN, and Hopfield neural networks were used to obtain all minima. The experiments show that this new algorithm is an effective method for multimodal function optimization. Compared to immune algorithm, the efficiency and precision are both improved.

关 键 词:HOPFIELD神经网络 免疫算法 聚类 多峰函数优化 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP301.6[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象