检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕子昂[1] 罗四维[1] 杨坚[1] 刘蕴辉[1] 邹琪[1]
机构地区:[1]北京交通大学计算机与信息技术学院,北京100044
出 处:《计算机学报》2007年第7期1094-1103,共10页Chinese Journal of Computers
基 金:本课题得到国家自然科学基金(60373029);教育部博士点基金(20050004001);北京市重点学科共建项目基金资助
摘 要:从微分几何角度考察与参数化形式无关的统计模型流形的固有复杂度,指出模型流形的Gauss-Kroneker曲率可以完全刻画模型流形在一点处的全部性质,进而分析了曲率与体积的关系;给出了基于参数估计量邻域附近的解轨迹方法的曲率计算方法;证明了用于衡量泛化能力的未来残差可以用模型的曲率来表示,由此给出一种新的以曲率度量模型复杂度的模型选择准则GKCIC;对几何方法和统计学习理论进行了分析比较.在人工数据集和真实数据集上的比较实验结果表明了文中提出的方法的有效性.The paper uses the conception of curvature from the point of view of differential geometry to explore the intrinsic model complexity that is free of reparametrization; and then through theoretical analysis, shows that the Gauss-Kroneker curvature can describe the whole properties of the statistical manifold, thus gives the relation between curvature and the volume of the manifold. An algorithm is proposed based on study of the solution locus in the neighborhood of the expectation of parameters to calculate the curvature of the model. This paper proves that the future residual that is qualified to measure the generalizability can be expressed by using the intrinsic curvature array of model, from which a new model selection criterion GKCIC is given. It not only considers the factors such as the number of parameters, sample size and functional form, but also with very clear and intuitive geometric understanding of model selection. The geometrical method of the statistical manifold is compared with the statistical learning theory, in particular, the VC dimension versus the Gauss-Kroneker curvature. By running the algorithm on synthetic and real datasets, the author argue that the GKCIC work efficiently.
关 键 词:模型选择 泛化能力 固有复杂度 统计流形 Gauss-Kroneker曲率
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28