检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭文彬[1]
机构地区:[1]扬州大学数学系,扬州225002
出 处:《科学通报》1997年第2期122-125,共4页Chinese Science Bulletin
摘 要:本文中所有群为有限群。定义和符号参见文献[1~3]。这里给出本文常用的一些概念与符号。一个群类称为群系,如果它关于同态像和次直积是封闭的。非空群系(?)称为局部的,如果由可推得一个群类(?)称为Fitting类,如果满足以下两个条件:1)若N为G的次正规子群,则若N_1,…,N_t为G的次正规子群且N_i∈(?),i=1,…,t,则。一个群系的局部子群系如果同时是一个Fitting类,则称之为局部Fitting子群系。设(?)为某一群的集合。我们用form(?)表示由群集合(?)生成的群系,用lform(?)表示由(?)生成的局部群系,π(G)表示群G的阶的素因数的集合,表示所有幂零群的群系,N_π表示所有幂零π-群的群系,(1)表示单位元群系。群系(?)的子群系(?)_1称为在(?)中可补的,如果(?)_1在(?)的子群系格里可补,即存在(?)的子群系(?)_2,使得且.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49