检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王常虹[1] 高晓智[1] 徐立新[1] 庄显义[1]
出 处:《系统仿真学报》1997年第2期65-70,共6页Journal of System Simulation
摘 要:本文首先详细地阐述了BP神经网络和CMAC神经网络各自的结构,原理以及算法。提出了一种BP神经网络与CMAC神经网络组合起来的新型复合神经网络模型,并利用误差逆向传播原理推导出复合网络的学习法。仿真实验结果表明,这种复合神经网络在保留了BP和CMAC各自特长的基础上,同时具有学习速度快。This paper first discusses the principle of two typical classes of neural network models: BP and CMAC, their structures, learning algorithms and approximation abilities. A new kind of Combined Neural Network(CNN) which uses the output of a CMAC neural network as an additional input node of BP neural network is then introduced. The corresponding learning algorithm is also derived by back propagating the approximation error in the output layer through each hidden layer to the input nodes. Comparisons of convergence speed and generalization ability have been made among BP, CMAC and CNN. Simulations suggest that the CNN has the advantage of fast learnig speed and good generalization ability. Further investigations are under discussion to explore this new neural network model to real time applications.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33