检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学电子工程学院,西安710071
出 处:《电子与信息学报》2007年第8期1837-1840,共4页Journal of Electronics & Information Technology
基 金:国家部级基金资助课题
摘 要:针对杂波环境被动传感器机动目标跟踪问题,该文研究了一种基于粒子滤波的被动多传感器机动目标跟踪新算法。在该算法中,首先推导了杂波环境下粒子滤波的似然函数表达式。其次将粒子滤波与交互多模型(IMM)相结合,用IMM方法实现模型的切换,以适应目标的机动变化。用粒子滤波实现对观测方程的非线性处理。最后,建立了被动多传感器的非线性观测模型,避免了目标的不可观测性,并且算法还能够处理非高斯噪声情况。仿真实验结果表明,提出的算法能够有效地对被动机动目标跟踪,且性能优于交互多模型概率数据关联滤波器(IMM-PDAF)。To maneuvering target tracking with multiple passive sensors in clutter environment, a novel algorithm based on particle filter is proposed. In this algorithm, the likelihood function of particle filter in clutter is derived. Then the particle filter and Interactive Multiple Model (IMM) method are integrated. The former solves the proplem of passive target manoeuvre and the latter deals with the nonlinear problem of the measurement equation. In order to avoid the unobservability problem of passive target tracking, a nonlinear measurement model of multiple passive sensors is founded, and the algorithm can deal with the case of non-gaussian noise. Finally, the simulation results show that the proposed algorithm is effective, and its performance is superiority over the interacting multiple model-probabilistic data association filter (IMM-PDAF).
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40