检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈先来[1] 肖晓旦[1] 杨荣[2] 刘建平[3]
机构地区:[1]中南大学湘雅医学院 [2]中南大学湘雅医院胃肠外科,长沙410078 [3]国防科技大学机电工程与自动化学院,长沙410073
出 处:《中国循证医学杂志》2007年第9期637-640,共4页Chinese Journal of Evidence-based Medicine
基 金:国防科技大学机电工程与自动化学院创新基金"胃癌细胞识别知识库的自动创建";湖南省社会科学基金"临床决策信息环境的研究"(编号:06ZC92)
摘 要:目的探讨误差反向传播(backpro pagation,BP)神经网络在胃癌细胞识别中的应用价值。方法在308例胃切除病例的胃组织切片中选取510个胃细胞,其中腺癌细胞210个,非癌性细胞300个,测量细胞的10个形态学特征。将所得到的数据随机分成A组(训练组)和B组(测试组)。建立三层BP神经网络,并利用A组数据对神经网络进行训练,再利用A、B两组数据对网络模型进行检验测试。结果BP神经网络对A组细胞识别的灵敏度为99%,特异度为99%,阳性预测值为98%,阴性预测值为99%,识别正确率为98%;对B组细胞识别的灵敏度为99%,特异度为97%,阳性预测值为96%,阴性预测值为99%,识别正确率为98%。ROC曲线下面积为0.99。结论本研究结果显示,BP神经网络用于胃癌细胞识别非常有效,可用于胃癌细胞的自动识别。Objective To investigate the value of back propagation (BP) neural network for recognizing gastriccancer cell. Methods A total of 510 cells was selected from 308 patients. There were 210 gastricadenocarcinoma cells and 300 non-cancer gastriccells. Ten morphological parameters were measured for each cell. These data were randomly divided into two groups: training dataset (A) and test dataset (B). A threelayer BPneural network was built and trained by using dataset A. The network was then tested with dataset A and B. Results For data A, the sensitivity of network was 99%, specificity 99%, positive predictive value 98%, negative predictive value 99%, and accuracy 99%, For data B, the sensitivity of network was 99%, specificity 97%, positive predictive value 96%, negative predictive value 99%, the accuracy 98%. With receiver operator characteristic(ROC) curve evaluation, the area under ROC curve was 0.99. Conclusion The model based on BP neural network is very effective. A BPneural network can be used for effectively recognizing gastric cancer cell.
关 键 词:基于误差反向传播神经网络 胃肿瘤 细胞识别
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222