检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘美茹
机构地区:[1]哈尔滨铁道职业技术学院计算机教研室,哈尔滨150086
出 处:《计算机工程》2007年第15期217-219,共3页Computer Engineering
摘 要:文本分类技术是文本数据挖掘的基础和核心,是基于自然语言处理技术和机器学习算法的一个具体应用。特征选择和分类算法是文本分类中两个最关键的技术,该文提出了利用潜在语义索引进行特征提取和降维,并结合支持向量机(SVM)算法进行多类分类,实验结果显示与向量空间模型(VSM)结合SVM方法和LSI结合K近邻(KNN)方法相比,取得了更好的效果,在文本类别数较少、类别划分比较清晰的情况下可以达到实用效果。Text classification is the foundation and crucial problem of text data mining, it is an application based on the technology of natural language processing and machine learning. Feature extraction and categorization algorithm are the most crucial technologies for this problem. This paper proposes that latent semantic indexing (LSI) is used for feature extraction and dimensionaiity reduction, support vector machine(SVM) is used for text classification. The result shows that compared with the classifier based on vector space model combined SVM and the classifier based on LSI combined K-nearest neighbor (KNN), better performance is acheived. It shows that while the number of categories is small, and the categories are divided distinctly, the method can be used for practical application.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195