检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统仿真学报》2007年第22期5169-5174,共6页Journal of System Simulation
基 金:吉林省科技计划发展项目(20040532)。
摘 要:基于精确模型计算力矩控制,考虑了可重构机械臂的动力学系统中存在的大量不确定性,提出了鲁棒模糊神经智能控制算法辨识补偿结构和非结构不确定性,给出了模糊神经网络的权值、隶属度函数参数以及综合误差的分立量估计Lyapunov稳定性在线调节律。通过Lyapunov稳定性理论证明了提出的RNF补偿算法的最终一致有界性,以RR(Revolute-revolute)和RRP(Revolute-revolute-prismatic)两种构形的可重构机械臂为例,通过仿真研究了算法对轨迹跟踪的有效性。Computing torque control (CTC) based robust neurofuzzy (RNF) control scheme was developed to identify and compensate structured and unstructured uncertainties, which were impossible avoided for reconfigurable manipulator. The update laws on weights, centers and widths of membership function in neurofuzzy network, and part of comprehensive error were given by Lyapunov stability theorem, Importantly, robust neurofuzzy algorithm proved ultimately uniform bounded (UUB) through Lyapunov stability theory. Finally, the controller for a RR and a RRP reconfigurable manipulator were designed and simulated due to different uncertainty resulted by different configuration; simulation results were discussed and show the proposed algorithm effective and satisfactory on tracking performance.
关 键 词:计算力矩控制 鲁棒模糊神经补偿 可重构机械臂 仿真
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15