检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学自动化科学与工程学院,广东广州510640
出 处:《华南理工大学学报(自然科学版)》2007年第10期162-167,共6页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(60274033)
摘 要:过程神经元网络是一种适合于处理过程式信号输入的网络,其基本单元是过程神经元——一种新的神经元模型.过程神经元和传统神经元既存在本质区别,又有着紧密的联系,前者可用后者以任意精度无限逼近.文中首先介绍了过程神经元及其网络模型;然后,给出了过程神经元的两个逼近定理及其证明——时域特征扩展模型和正交分解特征扩展模型.基于第二个定理,给出了数值输出型过程神经网络的相关推论.针对模拟信号的仿真实验表明,过程神经网络对白噪声具有很好的抑制作用.最后,针对过程神经网络面临的主要问题进行讨论,指出了一些具有前景的研究方向.The process neural networks (PNNs) are networks that adapt to the process of signal input, whose elementary unit is the process neuron (PN), an emerging neuron model. Both essential difference and close correlation exist between the process neuron and the traditional neurons, for example, PN can be approximated by traditional neurons with arbitrary precision. In this paper, the PN model and some PNNs are introduced. Then, two PN approximating theorems are presented and proved in detail. Each theorem gives an approximating model to the PN model, i. e. , the time-domain feature expansion model and the orthogonal decomposition feature expansion model. Moreover, a corollary is given for the real-valued output PNN based on the second theorem. Afterwards, a simulation of analog signals is carried out, showing that the PNN can well suppress the white noises contained in signals. Finally, some problems about PNNs are discussed and further research orientations are suggested.
关 键 词:人工神经网络 过程神经元 仿真 函数正交基 傅立叶级数 特征扩展
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.221