带脉冲变系数的BAM神经网络的全局指数稳定性(英文)  被引量:4

Global Exponential Stability of Bam Neural Networks with Varying Coefficient and Impulses

在线阅读下载全文

作  者:张超龙[1] 杨逢建[1] 胡小建[1] 

机构地区:[1]仲恺农业技术学院计算科学系,广东广州510225

出  处:《生物数学学报》2007年第3期395-402,共8页Journal of Biomathematics

基  金:This Work was Partially Supported by Science and Technology Plan Project of Guangzhou (2006J1-C0341)

摘  要:在固定脉冲时刻,利用无需有界、单调和可微的李普希茨激励函数,来研究BAM脉冲神经网络,获得平衡点的存在唯一性和全局指数稳定性的充分条件,然后通过举例来验证所得结论的有效性.In this paper, some sufficient conditions ensuring existence, uniqueness, and global exponential stability of the equilibrium point of a class of two-layer heteroassociative networks called bidirectional associative memory(BAM) networks with impulses are obtained, which makes full use of Lipschitzian activation functions without assuming their bounded, monotonicity or differentiability and subjected to impulsive state displacements at fixed instants of time. An illustrative example is to demonstrate the effectiveness of the obtained results.

关 键 词:神经网络 全局指数稳定性 脉冲 

分 类 号:O175[理学—数学] TP183[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象