检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘和祥[1] 边信黔[1] 秦政[1] 王宏健[1]
机构地区:[1]哈尔滨工程大学自动化学院,哈尔滨150001
出 处:《系统仿真学报》2007年第24期5672-5674,5679,共4页Journal of System Simulation
基 金:黑龙江省博士后基金资助(L13H_Z05098)
摘 要:在复杂海洋环境中,利用前视声呐获取的障碍物信息指导自治水下机器人(AUV)进行局部避碰。主要采用强化学习的方法对AUV进行控制和决策,综合Q学习算法、BP神经网络和人工势场法对AUV进行避碰规划。强化学习的方法强调AUV在环境的影响中学习,通过环境对不同行为的评价性反馈信号来改变行为选择策略。并且在环境发生变化时,AUV通过学习来实现对新环境的适应,不断改进其自治能力,进而实现在不确定环境下的避障任务。开发了AUV运动规划的虚拟仿真软件系统,仿真实验证明了算法的合理性与可行性。The obstacle information obtained with forward sonar is to instruct local avoidance for Autonomous Underwater Vehicles (AUV) in complex sea environment. The reinforcement learning is adopted to control and decision for AUV, and Q-learning, BP neural net, arttficial potential is integrated to avoidance planning for AUV. The reinforcement learning method emphasizes that AUV can change behavior select strategy by estimate feedback signal from different environment during AUV learns from environment. When environment changes, AUV can improve autonomous ability by adapting to the new environment and complete obstacle avoidance under uncertain environment. The visual simulation soft system for motion planning and simulation of AUV was developed, and the validity and feasibility were verified through simulation test.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46