检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘壮明[1] 管鲁阳[1] 鲍明[1] 李晓东[1]
出 处:《应用声学》2008年第1期17-23,共7页Journal of Applied Acoustics
摘 要:传统反向传播(BP,Back-Propagation)算法虽然解决了多层感知器的收敛问题,但是训练时间长、收敛速度慢。本文针对训练样本分布状态未知的问题,提出了一种有效的加速收敛方法,即对不同的训练样本选择不同的学习率。将这种改进的BP算法应用到履带车与轮式车的声学分类中,明显提高了算法的收敛速度、泛化能力及稳定性,并可根据需要调整两种车辆的识别率。Basically, the conventional back-propagation (BP) algorithm overcomes the convergence problem of the multilayer perceptron, but slower convergence rate and longer training time are some disadvantages as compared with other competing techniques. In this paper, with the consideration of unknown data distribution, an efficient technique is proposed to improve the convergence rate, in which the learning rate coefficients are taken to be variable for different training samples. Based on the improved BP algorithm, experimental results in the application of acoustic classification for tracked and wheeled vehicles indicate a superior convergence rate, generalization capability and steadiness, and that the classification accuracy of vehicles could be adjusted according to request.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143